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The effects of a vertical baffle on the resonant frequencies of fluid within a rectangular 
container are investigated using the linearized theory of water waves. The accuracy 
of simple approximate solutions is assessed by comparison with an accurate solution 
based on eigenfunction expansions. It is found that a surface-piercing barrier can 
change the resonant frequencies significantly while the effect of a bottom-mounted 
barrier is usually negligible. 

1. Introduction 
The resonant frequencies of oscillation of a liquid in a partly filled horizontal 

rectangular container are easily determined on the basis of linearized wave-wave 
theory. If a thin vertical baffle is introduced into the liquid so as to form two separate 
containers two sets of resonant frequencies exist appropriate to the dimensions of the 
respective containers. If the baffle is introduced only partly into the liquid it can be 
shown (Courant & Hilbert 1953) that the resonant frequencies are decreased in 
general, except when the position of the baffle coincides with an antinode of an 
oscillation where the horizontal velocity is zero throughout the depth and the 
resonant frequency remains the same. As the baffle is introduced further and further 
into the fluid the nth resonant frequency changes continuously from its corresponding 
value in the absence of the baffle to the closest eigenfrequency not greater than it 
corresponding to the two separate containers. 

The purpose of this paper is to examine precisely how the eigenfrequencies change 
with the position and depth of the baffle and the dimensions of the container. 

In $2 the problem is formulated on the basis of linear water-wave theory. For 
simplicity, motion in the container is assumed to be restricted to be in vertical planes 
normal to the vertical plane of the baffle and is thus two-dimensional. By matching 
eigenfunction expansions valid either side of the baffle across the gap in the fluid not 
covered by the.baffle, an integral equation is obtained for the unknown velocity across 
the gap, and an explicit condition derived for the resonant wavenumbers in terms 
of a quantity A related to this velocity. A similar approach has been used by others, 
notably Miles (1967, 1981) in related problems. The expansion of the unknown 
velocity in a series of orthogonal functions enables, after truncating the series, an 
explicit form to be derived for A as the ratio of two known determinants as described 
in Collin (1960) and used by Mei & Black (1969). 

In $3 alternative approximate methods are described which avoid the numerical 
difficulties associated with the accurate approach. These include a one-term vari- 
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ational approximation, a ' wide-spacing ' approximation, and a ' narrow-gap ' approxi- 
mation. Results for a range of parameters are presented in $4 where the relative 
merits of the approximations are discussed. 

2. Formulation 
Cartesian coordinates are chosen with y = 0 the undisturbed free surface. The walls 

of the tank are a t  x = b, -c, 0 < y < h so that the tank is of uniform depth h. The 
baffle occupies the interval L', which is x = 0, 0 < y < a for the surface-piercing 
baffle, and x = 0, a < y < h for the bottom-mounted baffle, with 0 < a < h in each 
case. Most of what follows is easily adapted to more general situations in which there 
is a baffle with one or more gaps in the interval x = 0,O < y < h. 

The usual assumptions of linearized water-wave theory ensure the existence 
of a velocity potential @(x, y, t ) .  For simple harmonic motions we write 
@ = Re $(x, y) exp ( - id) ,  and then the time-independent potential $(x, y) satisfies 

Vz$ = 0 in the fluid, (2.1) 

(2.2) 
K $ + - = O  a$ (y=O, - c < x < b ,  x+O), 

a Y  
where K = w2/g, 

(2.3) 
- = 0  a$ o n y = h ,  - c < x < b ,  
a Y  

a$ -= 0 on L' 
ax 

- = 0  o n x = b ,  -c,  O < y < h .  (2.5) 8X 

The eigenvalue problem defined by (2.1)-(2.5) is to be solved for allowable values of 
K and hence w. In  the absence of the baffle, 

where 

$(x, y) = cosk(b-2) coshk(h-y), 

k = n x / d ,  d = b + c  ( n =  1,2 ,  ...), 

are solutions. The resonant frequencies are then given by 

d / q  = K = k tanh kh. (2.8) 
Similarly if the baffle extends throughout the depth, then there are two distinct 

(2.9) 
sets of solutions 

$(x, y) = cosk(b-2) coshk(h-y) (0 < x < b), 

where k = nx/b  (n = 1 ,  2, ...), (2.10) 

and $(x, y) = cos k(c+X) cash k(h-y) ( -C < z < 0) ,  (2.11) 

where k = m x / c  (m = 1 ,  2, ...). (2.12) 

The aim of the paper is to examine how these resonant frequencies are influenced 
by the presence of the baffle. In particular what is the dependence of kd on ald, b/d 
and h/d, non-dimensional parameters describing the relative length and position of 
the baffle, and the tank aspect ratio. 
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We introduce the orthonormal eigenfunctions 

$n(y )  = coskn(h-y), 

where k, (n = 1, 2, ...) are the real positive roots of 

K + k ,  tank,h = 0, 
and k, = ik, and 
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2% = (h+sin2knh). 
2k- 

Then it follows that 
,& 

f $n(y) ~lrrn(y) dy = dnm. 

We pose solutions in the form 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where the U ,  are the Fourier coefficients in the expansion of the horizontal velocity 
U(y) across x = 0, 0 < y < h. Thus 

where L is the interval on x = 0 not occupied by the baffle, and we have used the 
condition U(y) = 0 on L'. 

The forms (2.17), (2.18) satisfy conditions (2.1), (2.2), (2.3), (2.5) and ensure that 
the horizontal velocity U(y) is continuous across L. Continuity of the dynamic 
pressure and hence the vertical velocity across L requires 

W 

U ,  k,' (coth k, b + coth k, c) $,(y) = 0 (y E L ) .  (2.20) 
n - o  

It follows on substitution of (2.19) that 

where 

(2.21) 

(2.22) 

and 

and a factor k has been included for later convenience. 

S, = kk,' (coth k, b + coth k, c), (2.23) 

K(Y9 t)  = - A-' $o(Y) *o(t) + Kl(Y, t ) ,  (2.24) Now 

where Kl(y, t)  is given by (2.22) without the term n = 0, and 

sin kb sin kc A = (cot kb + cot kc)-' = 
sinkd . (2.25) 

Thus, defining u(y) by (2.26) 
(2.21 ) becomes 

(2.27) 
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whilst multiplication of (2.26) by $o(y)  and integration over L gives 
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(u ,  $o) = 4 t )  dt = A. 
L 

It follows from (2.27) and (2.28) that 

(2.28) 

(2.29) 

a form which can be shown to be stationary with respect to first-order variations of 
u(y )  about its true value, and that the resulting approximation is never greater than 
the true value of A. 

Now u(y )  can be expanded in an infinite series of terms of the orthonormal set 
{$rn(y)} (m = 0, 1 ,  2, .. .). If we substitute, as a trial function, the truncated expansion 

M 

..I " 

into (2.29) we obtain 
UT c u  
uT Bu ' 

A = -  

(2.30) 

(2.31) 

where UT = (Uo, U1' .... Urn) ,  c = CCT, (2.32) 

(2.33) 

where 

and 

where (2.35) 

The best possible approximation of the form (2.30) is now obtained by requiring 
the um to leave (2.29) stationary. The required condition is found, by differentiation 
of (2.31) with respect to  the elements of u, to  be 

det (C-AB)  = 0. (2.36) 

The form of C permits this to be solved for A as follows (Collin 1960 p. 359). Divide 
the mth row by cm0, the nth column by cno, subtract the first row from the rest and 
factorize the resulting determinant. Then 

A =  

1 1  ............... 
..................... 
... Bon Bmn ... 

%n Cmn 

..................... 

..... Bon/Con ..... 

Bon Bm* 
Con Cmn 

... ... 

..................... 

(2.37) 

an explicit expression for A which can be made as accurate as required by increasing 
M (but see $4). The expression (2.37) in conjunction with (2.25) illustrates clearly 
the influence of the baffle on the eigenfrequencies. Thus i t  can be shown that A varies 
from infinity to  zero as the baffle is lowered into the fluid until it  totally separates 
the fluid region. 
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3. Approximate methods of solution 
The computation of (2.36) or the direct determination of A from (2.37) both involve 

appreciable numerical work so it is desirable to seek simple approximate solutions. 

3.1. One-term variational approximation 
The first and simplest is to choose M = 0 in (2.33) or (2.34) to obtain a one-term 
variational approximation A, to the true solution, with A, < A, namely 

It can be shown from (2.25) that the resulting values of kd are also lower bounds to 
the true values. 

3.2. The wide-spacing approximation 
For the higher modes at  least, the endwalls of the tank will be many wavelengths 
from the baffle and it is possible to consider a wide-spacing approximation used to 
good effect in other water-wave problems by Ohkusu (1974), Newman (1977) and 
Srokosz & Evans (1979) and by Martin (1984) who gives a detailed discussion of the 
approximation involved. 

The essential idea is that the wavefield away from the baffle may be approximated 
by a superposition of plane waves travelling in opposite directions, whilst any local 
evanescent modes are considered negligible. In the vicinity of the baffle it is assumed 
that the interaction of the wavefield with the baffle is governed by the appropriate 
reflection and transmission coefficients for waves incident upon the baffle in a fluid 
having a free surface extending to infmity in either direction. 

Thus the velocity potential for the motion near x = + b may be written 

whilst near x = - c ,  

1 #(x ,  y) X 2 c  COB k(x+  c ) ,  

= c (eik(z+c) + e-ik(z+e) )- 
(3.3) 

Here B, C are complex constants. 
Each of these potentials consists of waves travelling both towards and away from 

the baffle. Now a wave travelling away from the baffle arises from the reflection of 
a wave in the same region and the transmission of a wave from the region on the 
other side of the baffle. It follows that 

and 
(3.4) 

(3.5) 

Here R,(R2) is the reflection coefficient for waves incident upon the baffle from the 
left (right), whilst T is the transmission coefficient, known to be independent of the 
direction of the incident wave (Newman 1976). The condition for a solution of (3.4) 
and (3.5) to exist is 

(3.6) T2 eikd = (e-ikb-R 2 eikb) (e-ikC-R 1 .ikc)). 

This is a general expression derived under the wide-spacing approximation for the 
determination of the resonant frequencies in a tank containing any obstacle 
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whatsoever, in terms of the reflection and transmission coefficients for that obstacle 
in an infinite wavetrain. For the particular problem being considered here, the 
obstacle is a thin vertical barrier or barriers on the line x = 0. It is known that for 
all such problems, R, = R, (= R, say) and R +  T = 1 enabling (3.6) to  be reduced to 

sinkbsinkc ’ l - R  - T -- - A =  -- 
sin kd 2iR 2iR‘ (3.7) 

It is straightforward to extend the method to more than one baffle but with a 
corresponding increase in algebraic complexity. Of particular interest to  naval 
architects is the case of three identical baffles dividing the tank into four sections of 
equal length. Numerical computations of the forced motion in this type of tank are 
reported by Mikelis & Robinson (1985). If the four subsections of the tank are each 
of length b then the symmetric modes are given by (3.7) with d = 2b and c = b. The 
antisymmetric modes are at wavenumbers satisfying 

2r f (2r2 + 1 )t 
tan kb = 

where r = iR/(l-  R). 2r2- I ’ 

3.3. The nurrow-gap approximation 
If the surface-piercing baffle almost touches the bottom of the tank or the 

bottom-mounted baffle almost breaks the surface i t  is possible to use a narrow-gap 
approximation. The method which has been used with considerable success in 
water-wave problems was first used by Tuck (1971) in considering wave transmission 
through a narrow gap in a single vertical barrier. The idea is to match a local solution 
valid in the neighbourhood of the gap, where wave effects are not important to  an 
‘outer’ solution valid at some distance from the gap, in an overlap region, thereby 
communicating information on the details of the flow in the ‘inner’ region to the 
wave-like flow in the ‘outer’ region. 

I n  the present problem the ‘inner’ solution is solved by a straightforward use of 
conformal mapping techniques, while the ‘outer’ solution corresponds to  a sym- 
metrically placed pulsating wave source bounded by vertical rigid walls and a rigid 
bottom. This solution is most easily obtained by Fourier transforms. The technique 
is well known and only the results are given here. 

For the surface-piercing baffle, we find 

where 

A-l = 4kh7 { S,  -: In [:. (1 --:)I} 

whilst for the bottom-mounted baffle, 

A-’=4ksech2khNE 

s,= z {s, cos2 k, h - L }  
n - l  4kPn n7c * 

(3.9) 

(3.10) 

(3.11) 

(3.12) where 
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FIQURE 1.  Wavenumber kd us. baffle length a l d  for surface-piercing baffle; b/d = 0.5, h /d  = 1. 

kd 3r 

2r 

I I I 

old 

F’IQURE 2. Wavenumber kd va. baffle length a l d  for surface-piercing baffle; bld = 0.4, h/d = 1. 

0 0.5 1 .o 
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4r 

kd 3x 

2n 

0 0.5 LO 
1 -o ld  

FIQUKE 3. Wavenumber kd us. baffle length 1 -a ld  for bottom-mounted baffle; 
b l d  = 0.5, hld = 1 .  

4. Results 
4.1. Full linear theory 

In order to determine A and hence kd using the full linear theory the matrices C and 
B must be computed. Whilst C is straightforward, t,he elements of B arc infinite sums 
requiring truncation. A discussion of the factors influencing the level of truncation 
in a related problem is given by Evans & McIver (1984). In the present work it was 
found that satisfactory convergence for the element B,, was obtained by summing 
to 10 (max (m, n) + 100) terms which is somewhat more terms than usually required 
in problems of this type. 

Although A is given explicitly by (2.37) in terms of the elements of B and C i t  turns 
out that the determinants in (2.37) are highly ill-conditioned, with rapid variation 
of A occurring for small changes in the parameters. In  contrast a standard root-finding 
routine enabled the value of kd to be found in a straightforward manner from (2.36) 
with A given by (2 .25)  and this method was used for all the linear theory calculations. 
The eigenvalue theory of Courant & Hilbert (1953) provided bounds which simplified 
the calculations. It was found that for M = 5, the value of kd obtained was accurate 
to two decimal places except when the tank was almost totally separated by the baffle. 
In all the results presented here M was chosen to be 20 which was usually sufficient 
for three-figure accuracy. 

The results are presented as curves of kd against a l d  for different values of b l d ,  
and hld.  The resonant frequencies can then be determined from (2.8) if necessary. 

Figure 1 shows results for a surface-piercing baffle placed centrally in the tank. The 
symmetric modes of the unobstructed tank (kd = 2nn, n integer) have zero horizontal 
velocity on the centreline and so are unaffected by the baffle. The value of kd for the 
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FIQURE 4. Wavenumber kd vs. baffle length 1 -a/d for bottom-mounted baffle; 
b l d  = 0.4, hld = 1. 
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9 -  
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1 -  

6 -  
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F’IQURE 6. Comparison of wide-spacing (-) and one-term variational (---) approximations with 
the full theory ( x ). Modes three and five for (a) surface-piercing baffle, (b) bottom-mounted baffle; 
b / d  = 0.5, h/d = 1. 

lowest mode is slowly reduced as the submergence of the baffle is increased, until the 
tank is almost fully divided when there is a very rapid drop to zero. A similar 
phenomenon has been observed by Tuck (1980) when considering the effect of a 
submerged barrier on the natural frequencies of a basin connected to open water. As 
might have been anticipated, the higher-frequency modes are reduced to their lower 
limiting values much more rapidly as the submergence increases. When the baffle is 
not centrally placed, as in figure 2, some of the symmetric modes are affected by the 
presence of the baffle. Whenever the ratio of the widths of the basins on either side 
of the baffle is rational there will be some unaffected symmetric modes. 

For the case of a bottom-mounted baffle the behaviour differs only in detail, as 
can be seen in figures 3 and 4. Note that a is here the submergence of the baffle tip 
and that the horizontal axis is reversed so that the fully-divided tank again lies on 
the right of the figures. For this geometry the barrier must extend over a substantial 
part of the depth before any significant change in the natural frequencies will occur. 
The higher modes are less affected by the baffle as might be expected on physical 
grounds. 

4.2. Approximate solutions 
Three different approximate expressions for A have been described from which, using 
(2.25), (2.8) the eigenfrequencies can be estimated. The least useful of these is the 
narrow-gap approximation given by (3.8)-(3.11). This gives very accurate results 
when compared with results from the full linear theory when the gap is of the order 
of a tenth of the depth or smaller but rapidly diverges from the full solution as the 
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FIaURE 8. Wavenumber kd us. baffle submergence ald for a tank of width d containing three 
equally spaced bottom-mounted baffles. 

kd 

2r 

= 

O L  

gap is increased. The one-term variational approximation given by (3.1) performs 
almost as well for small gaps and also reproduces the general behaviour elsewhere. 

For a surface-piercing baffle the wide-spacing approximation given by (3.6) with 
the deep-water reflection coefficient R = rCI1(Ka)/(nI1(Ka) + iKl(Ka)), (Ursell 1947) is 
accurate for all modes and over a wide range of parameters as is indicated by the 
results of figure 5 ( a )  and 6 ( a ) .  (In figure 6(a )  only that part of the curves where kd 
differs sensibly from its limiting value of nn is shown.) This approximation only fails 
for the lowest mode in not giving the small-gap behaviour (figure 5a).  The one-term 
variational approximation does give this behaviour in agreement with the narrow-gap 
approximation, although it is generally less accurate for larger gaps and for the higher 
modes. 

For bottom-mounted baffles the corresponding deep water reflection coefficient 
R = Ko(Ka)/(irClo(Ka) + K0(Ka)) (Ursell 1947) is used in the wide-spacing approxima- 

--- 

- _ _  

c I I I I I 
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tion and i t  is seen from figure 5(b)  that this is inferior to the one-term variational 
approximation for the lowest mode but, from figure 6 ( b )  superior for the higher 
modes. 

So far all the calculations reported have been for a depth to width ratio of unity. 
Figure 7 gives results for the lowest mode in a shallower tank where hld = 0.5. For 
a surface-piercing baffle, the effects of the reduced depth do not become significant 
until the gap is quite small. Once again, except when the gap is small the wide-spacing 
approximation is superior to the variational approximation although the only way 
in which the depth of the tank enters the approximation is through (2.8). A 
bottom-mounted baffle is now more effective in reducing the value of Ed, since it need 
extend over a smaller proportion of the depth to produce a given change in kd. Again 
it is clear from figure 7 ( b )  that the variational approximation is best for the lowest 
mode. The loss of accuracy for shallow depths of the wide-spacing approximation 
may be seen to some extent in figure 7 ( b )  for a l d  = 0.5 where kd should equal x .  This 
‘short-fall’ becomes more apparent as the depth is further reduced. 

Finally results are given in figure 8 for a tank containing three identical bottom- 
mounted baffles. These calculations were made using the wide-spacing approximation 
(equations (3 .7)  and (3.8)) with the deep water reflection coefficient (given above). 
The lowest four modes are displayed, modes two and four are symmetric modes and 
correspond to the lowest two modes of a tank of width 2b containing one centrally 
placed baffle. 

Conclusion 
The effect of introducing a thin vertical baffle into a rectangular two-dimensional 

wave tank is to lower the eigenfrequencies. Roughly speaking, a half-immersed 
surface-piercing baffle reduces the lowest resonant wave-number to less than half. In 
contrast, a bottom-mounted baffle of the same length has negligible effect on the 
resonant wavenumbers. The method described here, using linear water-wave theory, 
enables the eigenfrequencies to be computed for either a bottom-mounted or surface 
piercing vertical baffle of any length and position and for all tank dimensions. 

Of particular interest is the simple formula 

sin kb sin kc - I - R -- 
sin kd 2iR ’ (3 .7)  

for determining the eigenfrequencies in terms of the reflection coefficient for the baffle 
in an infinite wavetrain, based on the wide-spacing approximation. It has been shown 
that even using the infinitely deep-water expression for R (3 .7)  predicts the resonant 
frequencies accurately over a wide range of parameters. 

The extension to a three-dimensional rectangular tank with a baffle extending the 
full width is straightforward although the approximate expression (3 .7)  requires the 
corresponding value of R for obliquely-incident waves which is not known explicitly. 

The authors would like to thank Dr D. H. Peregrine for bringing this problem to 
their attention. 
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